skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Chi-Fang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning the Hamiltonian underlying a quantum many-body system in thermal equilibrium is a fundamental task in quantum learning theory and experimental sciences. To learn the Gibbs state of local Hamiltonians at any inverse temperature β, the state-of-the-art provable algorithms fall short of the optimal sample and computational complexity, in sharp contrast with the locality and simplicity in the classical cases. In this work, we present a learning algorithm that learns each local term of a n-qubit D-dimensional Hamiltonian to an additive error ϵ with sample complexity $$\tilde{O}\left(\frac{e^{\mathrm{poly}(\beta)}}{\beta^2\epsilon^2}\right)\log(n)$$. The protocol uses parallelizable local quantum measurements that act within bounded regions of the lattice and near-linear-time classical post-processing. Thus, our complexity is near optimal with respect to n, ϵ and is polynomially tight with respect to β. We also give a learning algorithm for Hamiltonians with bounded interaction degree with sample and time complexities of similar scaling on n but worse on β, ϵ. At the heart of our algorithm is the interplay between locality, the Kubo-Martin-Schwinger condition, and the operator Fourier transform at arbitrary temperatures. 
    more » « less
    Free, publicly-accessible full text available December 14, 2026
  2. We design a quantum algorithm for ground state preparation in the early fault tolerant regime. As a Monte Carlo style quantum algorithm, our method features a Lindbladian where the target state is stationary. The construction of this Lindbladian is algorithmic and should not be seen as a specific approximation to some weakly coupled system-bath dynamics in nature. Our algorithm can be implemented using just one ancilla qubit and efficiently simulated on a quantum computer. It can prepare the ground state even when the initial state has zero overlap with the ground state, bypassing the most significant limitation of methods like quantum phase estimation. As a variant, we also propose a discrete-time algorithm, demonstrating even better efficiency and providing a near-optimal simulation cost depending on the desired evolution time and precision. Numerical simulations using Ising and Hubbard models demonstrate the efficacy and applicability of our method. Published by the American Physical Society2024 
    more » « less